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Abstract. MicroRNAs are an abundant class of eukaryotic non-coding RNAs, 
and they are involved in the negative post-transcriptional regulation of gene ex-
pression.  

Recently, the DNA sequences of more than 500 human miRNA promoters 
have been characterized by chromatin-immunoprecipitation. The present work 
has the main objective of performing an in silico characterization of all these 
promoters, studying the possible transcription factors controlling miRNA ex-
pression. We are looking for transcription factors regulating miRNA expression 
and being simultaneously the target protein-coding gene of that same miRNA.  

The purpose of this work is to assemble and characterize a catalogue of such 
mixed transcription factor/miRNA regulation loops in humans. All data was 
processed and stored in a relational database. Furthermore, a web platform was 
developed in order to enable further investigations. This platform is available at 
http://mirnatools.eu/TFmiRNA/loops.html. 
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1 Introduction 

MicroRNAs (miRNAs) are small (≈22 nucleotides), non-protein-coding RNA mole-
cules known to regulate the expression of genes by binding to the 3’-untranslated 
regions (3’-UTR) of mRNAs. These non-protein-coding RNA molecules are master 
molecular regulators that have been found to be involved in cellular processes ranging 
from differentiation, cell division, signal transduction and cancer. 

MicroRNAs expression appears to have a tissue specific signature in which specif-
ic miRNAs are expressed preferentially in some tissues or organs. It remains unclear 
which are the main factors that control this tissue-specificity, however several authors 
have postulated the existence of a regulatory feedback loop between transcription 
factors controlling miRNA expression and the regulatory control exerted by miRNA 
over the transcription factor expression [1] [2] [3] [4] [5]. In 2008, the DNA sequenc-
es of 550 human miRNA promoters have been characterized by chromatin-
immunoprecipitation [6], and this work has the main objective of performing an in 
silico characterization of all these promoters. 



1.1 MicroRNA biogenesis 

The first microRNA molecules, lin-4 and let-7, were identified in 1993 [7] and, since 
then, there has been a rapid progress in identifying more miRNAs and understanding 
their biogenesis, functionality and their target gene regulation. 

The majority of the miRNAs identified in the first 10 years were located in the 
noncoding regions between genes and transcribed by unidentified promoters. These 
miRNAs that are produced from their own genes are also known as intergenic miR-
NAs. In 2003, Ambros et al [8] also discovered some tiny noncoding RNAs derived 
from the intron regions of gene transcripts; these are intronic miRNAs, i.e., miRNAs 
produced from introns.  

Transcription factors (TFs) are proteins that either activate or repress genes tran-
scription by binding to short cis-regulatory elements called transcription-factor bind-
ing sites. These binding sites are located in the upstream region of genes – the pro-
moter region, which is located around the transcription start site (TSS). Post-
transcriptionally, microRNAs repress mRNA translation by binding to partially com-
plementary sites, called miRNA binding sites, in their target mRNAs. In animals, 
miRNA-mediated repression is often relatively weak, whereas transcription-factor-
mediated repression can be much stronger [9]. 

Similarly to TFs, a single miRNA can regulate multiple genes, and a single gene 
can be regulated by multiple miRNAs. Thus, it seems quite natural to think that both 
miRNAs and TFs may cooperate in regulating the same target genes at the transcrip-
tional and post-transcriptional levels. However, the molecular mechanism and nature 
of this interaction has not yet been understood. 

TFs are essential for transcription by binding to transcription-factor binding sites. 
The resulting transcript is capped with a specially-modified nucleotide at the 5’ end, 
and polyadenylated with multiple adenosines - a poly(A) tail, at the 3’ end [10]. In the 
case of the miRNAs, this initial transcript, also known as primary miRNA (pri-
miRNA), can be hundreds to thousands of nucleotides long and may contain several 
miRNA precursors. Each one is a hairpin structure composed by 60 to 80 nucleotides. 

The hairpin RNA structure is then recognized by a nuclear protein known as 
DGCR8 or “Pasha”. Pasha associates with the enzyme Drosha and orients this last 
one to excise the hairpin structure. The resulting hairpin, known as pre-miRNA, is 
exported from the nucleus to the cytoplasm in a process mediated by Exportin-5 pro-
tein. This transportat is energy-dependent, using GTP bound to the Ran protein [11]. 

In the cytoplasm, the pre-miRNA hairpin is recognized and cleaved by the Dicer 
enzyme, and its binding partners, TRBP protein included. This complex removes the 
loop region of the hairpin structure, releasing a miRNA duplex which is approximate-
ly 22 nucleotides long. The strand of the miRNA duplex that is less thermodynamical-
ly stable is preferentially loaded into the RNA-induced silencing complex (RISC) 
[12], which includes Dicer, TRBP and Argonaute proteins. The strand loaded into the 
RISC complex is called the guide strand and directs the RISC complex to its mRNA 
target. The other strand, the passenger strand, is subsequently degraded by an un-
known mechanism [13]. 

The mature miRNA loaded onto to the RISC complex guides both to their mRNA 
target and usually binds to the 3’-UTR of the mRNA. This association may result in 
either cleavage or translational inhibition of the target mRNA, depending on the base 



pair complementarity between the miRNA and the mRNA target region. Perfect com-
plementarity usually results in mRNA cleavage by the RISC complex, whereas imper-
fect base pairing leads to translation repression [13]. 

1.2 Predicting transcription factor binding sites 

The first step in the analysis of the transcription factor/microRNA regulation loops 
was to predict the transcription factor binding sites (TFBS) for all sequences of miR-
NA promoters published by Marson et al [6]. Given the miRNAs promoter sequences, 
it was necessary to know which TFs could bind to those promoters and regulate their 
transcription. 

Currently, there are several programs available, including TFSEARCH 1.3 [14], 
MAPPER 2 [15], Match 1.0 [16], P-Match 1.0 [17], PROMO 3.0.2 [18] and TFBind 
[19]. Predicting TFBS using position weight matrices (PWM) is widely used and 
theoretically supported by Berg and von Hippel [20]. Each matrix relates a consensus 
sequence to the four bases and each score is proportional to the binding energy for the 
protein–DNA interaction [21]. Figure 1 illustrates this. 

 

Fig. 1. Sp1 [T00757] Matrix on TRANSFAC 8.3 

Matrices and TFBS have been collected into databases such as TRANSFAC [22] 
and JASPAR [23]. However not only all matrices have their own specificity, as pre-
diction also requires the quantification of the similarity between the each weight ma-
trix and a potential TFBS detected in the sequence. 

In order to achieve a greater degree of accuracy, when comparing to the existing 
ones, several algorithms have been proposed in the last years. However, despite all 
efforts, these algorithms sometimes produce many false positives or false negatives. 
Thus, one of the major remaining problems is how to find the appropriate software. 
Consequently, investigators often use several of the existing programs. 

1.3 Predicting microRNA targets 

Nowadays it is evident that post-transcriptional processes play a much more important 
role in the regulation of gene expression than previously expected. So, a crucial step 
for the analysis of regulatory roles of miRNAs is the prediction of their targets. Alt-
hough we do not know exactly the precise way how miRNAs play their role, it is 
known that, in animals, miRNAs are able to repress the translation of target genes by 
binding to a small region of nucleotides that are present at the 3’-UTR region of the 
regulated gene [24]. This region, called “seed”, is located at positions 2-8 of the 5’ 



end of miRNAs and is known to contribute significantly to target recognition [25, 26]. 
That is why most existing algorithms start by trying to find regions of 3’ UTR target 
gene that have strong Watson-Crick base pairing complementary to the miRNA seed 
sites. 

Since this initial step usually results in thousands of potential target sites and many 
false positives, most algorithms also use other prediction criteria such as conservation 
of the miRNA target sites in homologous genes and local miRNA-mRNA interaction 
with a positive balance of minimum free energy [27]. However, several other features 
have been experimentally and computationally identified, considering an individual 
target site level as well a global mRNA level [28]. 

Currently, there are several programs available, e.g. Diana micro-T [29], miRanda 
[30], PicTar [31], PITA [32], RNA22 [33], TargetScan [34] and MicroCosm [35]. The 
several algorithms provide different predictions, and the degree of overlap between 
them is often poor or null [36]. Using GO (The Gene Ontology Consortium, 2000) 
has become a standard way to validate the functional coherence of genes in a target 
list. Nevertheless, this type of validation usually requires a statistical analysis to con-
firm statistical significance [37]. 

Additionally, databases such as miRWalk [38] and miRTarBase [39] have been 
published. These databases aggregate target predictions from several programs and/or 
also store experimentally validated targets. 

2 Materials and Methods 

The characterization of the DNA sequences of miRNA promoters by chromatin-
immunoprecipitation provided, among other data and information, a table with human 
miRNA promoters and associated proteins and genomic features (Supplementary 
table S7). All human coordinate information upon which this investigation is based it 
was downloaded in January 2005 from the UCSC Genome Browser (hg17, NCBI 
build 35). We started from these data and the first thing done was to collect all se-
quences from the indicated version of UCSC Genome Browser, according to the TSS 
positions of all 550 promoters. For that purpose it was necessary to write a small pro-
gram. One of the sequences (hsa-mir-142) was later discarded because TFBS predic-
tion tools are unable to deal with such a lengthy sequence (406435 nucleotides). 

Having all these promoters’ sequences, it was then necessary to predict TFBS for 
all of them.  For that, we used seven programs, namely Mapper 2, Match 1.0, Patch 
1.0, P-Match 1.0, PROMO 3.0.2, TFBind and TFSEARCH 1.3. Except for the input 
sequence and, when possible, matrices selection (HS or vertebrates), default parame-
ters were used. However, each program has its own specificities and it was necessary 
to deal with that in order to harmonize both inputs and outputs. 

Their first difference is the way how promoter sequences can be sent to them. 
MAPPER 2 is the only one that was able to process a FASTA file containing all pro-
moter sequences. For TFSEARCH 1.3 we were able to download EZRetrieve. This 
free tool is a TFSEARCH viewer and also processed the complete FASTA file. For 
TFBind we conceived a tool similar to EZRetrieve. This program reads a FASTA file 
and sends each sequence to the TFBind tool that is available online. Then saves the 
HTML outputs that can be seen when we perform the online search.  



For all the others, a previous registration on the sites where these tools are availa-
ble is necessary. Therefore, it is necessary to login before starting to use these tools. 
Because of that, it would be much more difficult to conceive a tool to perform this 
search automatically. We splitted our FASTA file into several small files and submit 
each one of them to each one of these tools. 

Having all these huge amount of data, it was then necessary to prepare it to be ana-
lyzed. EZRetrieve produced a table indicating the number of binding sites for each 
pair of predicted transcription factor and miRNA promoter sequence given to it as 
input. Since the number of binding sites is a good indicator for the probability of a TF 
to regulate the transcription of a miRNA promoter sequence, we decided to write a 
tool to parse all output files of each prediction program in order to count all binding 
sites for each pair transcription factor/miRNA promoter. 

Besides the specificities of each output, this tool had to deal with the fact that we 
were only interested in results from Homo sapiens (HS) and some programs gave us 
more than that. Thus, when not indicated in the output result, it was necessary to test 
each matrix against matrices databases in order to verify if we were in the presence of 
a human matrix or not. Same verification was performed with gene symbols, when 
necessary. Applied these filters and totalized all binding sites, it became obvious that 
there are significant differences among all prediction programs. 

Another issue related with these predictions is gene names. These outputs usually 
indicate a gene name and the identification of which matrix was used to get each pre-
diction. However, gene names are not always compatible among the several data-
bases, because most genes have more than one name. We downloaded all Homo sapi-
ens genes registered in the NIH genetic sequence database GenBank from the NCBI 
site. Besides the official gene symbols, this file also contains their synonyms or alias-
es. After comparing gene names, we were able to identify most of the genes listed in 
the outputs of the TFBS applications. However, some of them remain unclassified and 
many others are not Homo sapiens genes. 

The next step regards to the prediction of miRNA targets. Unlike, TFBS predic-
tions, these databases can be downloaded as text files. Despite the huge size of some 
databases, it is quite simple to understand their layouts and, when necessary, to write 
data extraction programs. For this purpose, we started by using miRWalk target pub-
lished predictions. Targets of all miRNAs analyzed by Marson et al [6] were com-
pared with Homo sapiens genes predicted by all TFBS applications and with their 
synonyms as well. Then it was necessary to identify the matching predictions between 
mirWalk targets and all TFBS databases in order to find the predicted loops. It is im-
portant to clarify that predicted loops were based on matching predictions only. 

This analysis was also performed using mirTarBase, a database with experimental-
ly validated targets. These first two databases differ from the others because their 
results are published scientific articles, instead of predicted sites. 

The next database used was Diana micro-T v3.0. This database has about 2.5 mil-
lion records and targets are identified by Ensemble ID. Since GenBank also contains 
Ensemble IDs, we wrote a program in order to extract from Diana database all records 
in which the target gene is one of the genes predicted by the TFBS applications. 

We also analyzed miRanda databases. There are four of them, combining good and 
non-good mirSVR scores with conserved and non-conserved miRNAs. However, we 
only analyzed good mirSVR scores databases. In these databases genes are identified 



by GeneBank ID (NCBI Entrez ID) and we started by writing a program in order to 
extract from these databases all records in which the target gene is one of the genes 
predicted by the TFBS applications. Similar procedures were adopted in order to ana-
lyze MicroCosm and TargetScan databases. This last one also has predictions for 
conserved and non-conserved sites. 

All collected data was stored in a relational database and a web platform was de-
veloped in order to enable further investigations. 

3 Results 

After analyzing all selected data (see Materials and Methods), we found 16450 of 
such loops, covering 311 distinct transcription factors and 344 distinct miRNAs. Us-
ing databases concordance as reliability criteria, only 5 loops were predicted by seven 
of the eight miRNA targets databases used: hsa-mir-20b/STAT3, hsa-mir-200b/ZEB1, 
hsa-mir-200c/ZEB1, hsa-mir-373/RELA and hsa-mir-429/ZEB1. However, several 
TFBS tools did not contribute to these predictions. In fact, the pair hsa-mir-9/NFKB1 
is the only loop predicted by all seven TFBS tools and six targets databases. However, 
this result is not as good as it appears to be because the average number of both pre-
dicted binding and target sites is very low. Nevertheless, there are several investiga-
tions relating NFKB1 with hsa-mir-9. 

If NFKB1 is involved in the loops with highest databases concordance, MYB tran-
scription factor is involved in the most loops with the highest target sites average (see 
Table 1 for details), considering TFBS and targets predicted by at least three data-
bases. In fact, MYB is involved in eighteen of the first twenty two loops in these con-
ditions. 

Table 1.  Regulation loops that have the highest target sites average.  

 
miRNA 

 
TF 

#TFBS 
Apps 

Avg. 
TFBS 

# Targets 
Apps 

Avg. 
Targets 

hsa-mir-150 MYB 4 9.25 6 30.25 
hsa-mir-182 MYB 5 21.00 4 23.00 
hsa-mir-607 IKZF1 3 24.67 3 22.33 
hsa-mir-155 MYB 3 4.00 5 20.00 
hsa-mir-195 MYB 4 1.50 3 20.00 
hsa-mir-497 MYB 4 1.50 3 20.00 

 
At this point, it is important to say that average target sites were calculated using 

only six databases, because the other two used databases do not indicate the number 
of target sites. MirTarBase contains experimentally validated targets and mirWalk 
contains published targets only. 

Considering mirTarBase as a reliable source of miRNA targets and selecting only 
loops with targets predicted by mirTarBase and whose TFBS were predicted by at 
least 5 tools, we have the 19 regulation loops listed in Table 2. As we can see in this 
table, the average number of TFBS for the hsa-mir-124/SP1 loop is much higher than 



all other loops. This is because both Patch 1.0 and TFBind predicted hundreds of 
TFBS in this case. 

Table 2.  Regulation loops predicted by mirTarBase and at least five TFBS applications.  

 
miRNA 

 
TF 

Avg. 
TFBS  

#TFBS 
Apps 

# Targets 
Apps 

hsa-mir-9 NFKB1 23.86 7 6 
hsa-mir-15a NFKB1 5.86 7 5 
hsa-let-7a NFKB1 16.14 7 2 

hsa-mir-146a NFKB1 5.00 7 2 
hsa-mir-23b PLAU 2.33 6 5 
hsa-mir-106a RUNX1 78.33 6 5 
hsa-mir-200b ZEB1 8.40 5 7 
hsa-mir-200c ZEB1 3.20 5 7 
hsa-mir-429 ZEB1 8.40 5 7 
hsa-mir-424 MYB 15.40 5 6 
hsa-mir-101 FOS 6.80 5 6 
hsa-mir-16 MYB 2.40 5 6 
hsa-mir-124 SP1 766.80 5 5 
hsa-mir-141 ZEB1 3.20 5 4 
hsa-mir-200a ZEB1 8.40 5 4 
hsa-mir-122 SRF 16.60 5 4 
hsa-mir-124 AHR 30.80 5 4 
hsa-mir-218 SP1 32.80 5 3 
hsa-mir-27a SP1 170.80 5 3 

 
Since the number of predicted binding sites is a good indicator for the probability 

of a TF to regulate the transcription of a miRNA promoter sequence, it is important to 
analyze which TFs and miRNAs have the highest number of predicted TFBS. These 
values are shown in Table 3 and Table 4. 

Table 3.  Top 10 of TFs by sum of predicted TFBS.  

TF Total BS Total loops Mean BS 
SP1 45631 197 231.63 

RUNX1 26965 241 111.89 
POU2F1 22013 265 83.07 
CREB1 11988 242 49.54 

REL 8603 62 138.76 
TP53 8276 188 44.02 
MYB 6756 206 32.80 

NFKB1 5992 104 57.62 
FOS 5676 111 51.14 

PAX5 5152 119 43.29 



Table 4.  Top 10 of miRNAs by sum of predicted TFBS.  

miRNA Total BS Total loops Mean BS 
hsa-miR-124 12809 107 119.71 
hsa-miR-106a 6084 109 55.82 
hsa-miR-607 6052 114 53.09 
hsa-miR-587 5683 103 55.17 
hsa-miR-425 5538 72 76.92 
hsa-miR-374b 5395 123 43.86 
hsa-miR-374a 5128 111 46.20 
hsa-miR-122 5128 87 58.94 
hsa-miR-421 4927 102 48.30 
hsa-miR-92b 4829 78 61.91 

 
As result of this work, we assembled and characterized a catalogue of such mixed 

transcription factor/miRNA regulation loops in human. All data is stored in a relation-
al database and a web platform was developed in order to enable further investiga-
tions. This database has 38 tables and stores about 1.7 million records. The web inter-
face is available at http://mirnatools.eu/TFmiRNA/loops.html and allows searching 
for loops using several criteria. Also presents all details of every loop such as predict-
ed TFBS and targets, scores of each prediction, etc. 

4 Discussion 

We were looking for transcription factors regulating the expression of a miRNA and 
being simultaneously the target protein-coding gene of that same miRNA, as illustrat-
ed in Figure 2. It is known that the cell’s machinery is designed in order to minimize 
energy consumption, so why should a gene regulate the expression of a miRNA and 
being simultaneously its target, usually resulting in its own translational repression? 

The existence of such regulatory loops seems to reveal a complex mechanism of 
genes regulation. Despite the fact that we cannot yet understand the biological signifi-
cance of these regulatory loops, their existence seems to be evident and should be 
experimentally validated. However, it is important to be aware that all loops predicted 
by our analysis are based on matching predictions only. Further investigations should 
address some more complex issues, such as: 

─ The fact that transcriptional and posttranscriptional regulation are very likely to 
occur at different time scales. 

─ Positive vs. negative regulatory feedbacks have important consequences in 
terms of network dynamics. Importantly, they are known to be prerequisites for 
the existence of multistability and oscillatory behavior, respectively. 

─ MicroRNAs regulate cellular networks as network components and it would be 
of key interest to assess the impact of the identified loops as part of the gene 
regulatory networks. 

 



 

Fig. 2. Mixed transcription factor/miRNA regulation loops 

Since a single miRNA can regulate multiple genes and a single gene can be regu-
lated by multiple miRNAs, it is quite natural to think that both miRNAs and TFs may 
cooperate in regulating the same target genes at the transcriptional and post-
transcriptional levels. In fact, the co-regulation of transcription factors and mi-
croRNAs in transcriptional regulatory networks is a subject that has been investigated 
by several authors [1] [2] [3] [40] [41] [42] [43] [44] [45] [46]. 

Clearly, miRNAs cannot independently perform a single task in cells. Instead, 
miRNAs regulate cellular networks as network components in many cellular func-
tions [4]. In fact, TFs and miRNAs function together in gene regulatory networks that 
are not yet completely identified and understood. Consequently, all loops identified 
by this investigation should be seen as components of regulatory modules, instead of 
isolated loops. Although this is true, we can also analyze each one of these individual 
loops. 

A similar loop was found in the developing of Drosophila melanogaster eye [5]. 
Author’s investigation revealed that, in nonstimulated cells, Yan represses miR-7 
transcription, whereas miR-7 RNA represses Yan protein expression in photorecep-
tors, by binding to sequences within its mRNA 3’ UTR. This mutually inhibitory 
relationship helps to partition the expression of Yan into eye progenitor cells and that 
of miR-7 into differentiating photoreceptors, contributing to these two alternative 
fates. According to the authors' conclusion, this mechanism can explain how signal 
transduction activity can robustly generate a stable change in gene-expression pat-
terns. 

As demonstrated in the Materials and Methods section, prediction of both TFBS 
and targets varies widely among all tools. To reduce the number of predictions and to 
try to raise the reliability of predicted results, the usual procedure is to consider only 
those results that are predicted by several algorithms, assuming this overlap as a high-



er-quality subset of predictions. However, this is not necessarily true. In fact, as indi-
cated by Ritchie W et al. [47], this can be a trap. They suggest that searching for over-
laps between miRNA target prediction algorithms should be discouraged owing to a 
lack of utility and rationale. For this reason and because we did not want to restrict 
future investigations, we decided to publish results from all used databases, despite 
the certainty that the vast majority of these predictions are not real loops. 

Keeping in mind the fact that this is an in silico analysis, we should be aware that 
the vast majority of all detected loops have a very low probability of being real loops. 
All predicted loops rely on several other tools and, as postulated by GIGO (garbage 
in, garbage out) axiom, if invalid data is entered into a system, the resulting output 
will also be invalid. Therefore, further investigations should start by defining reliabil-
ity criteria. Best validation would be to compare all predictions with experimentally 
validated targets. However, such datasets are too small to be used as benchmarks. 
Since each database scores each one of the predictions, these scores can be used to 
identify the most reliable predictions and an overall score can also be computed. 

Another possible way to perform additional validations is by using principal com-
ponent analysis (PCA). After applying PCA on a matrix with the number of predic-
tions (for example) for some selected miRNAs and genes, we can visually analyze 
how miRNAs are related to each other concerning the TFs that control their transcrip-
tion, as predicted by each one of the databases. We can cluster these results, measur-
ing the Euclidean distance of all miRNAs (for example). However, we can also clus-
ter all data used to perform PCA analysis and get a cluster dendrogram. Then, we can 
compare all resulting clusters with miRNA clusters already validated. 

Our ongoing work is trying to build up more knowledge in this research area. 

5 Conclusion 

Since cell’s machinery is designed in order to minimize energy consumption, it 
would be unlikely for a gene to regulate the expression of a miRNA and being simul-
taneously its target, usually resulting in its own translational repression at a post-
transcriptional level. However, this in silico analysis has found 16450 potential loops, 
covering 311 distinct transcription factors and 344 distinct miRNAs. Some of these 
loops have a great probability of being experimentally confirmed. Although not being 
the ultimate goal of this investigation, we also computed a score for each predicted 
loop. With this or any other scoring system it is possible to guide experimental valida-
tions of predicted loops. 

Despite the fact that we cannot yet understand the biological significance of these 
regulatory loops, their existence seems to be evident and this must be an important 
mechanism of genes regulation. However, all these data demand for further investiga-
tions and experimental validations. In order to enable further investigations, we de-
veloped a web platform through which all data can be analyzed. 
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