In Silico Analysis of MiRNA Promoters
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Abstract. MicroRNAs are an abundant class of eukaryotic nmting RNAS,
and they are involved in the negative post-trapsiomnal regulation of gene ex-
pression.

Recently, the DNA sequences of more than 500 hum&N& promoters
have been characterized by chromatin-immunopretipit. The present work
has the main objective of performing amsilico characterization of all these
promoters, studying the possible transcriptiondectcontrolling miRNA ex-
pression. We are looking for transcription facta@gulating miRNA expression
and being simultaneously the target protein-codimge of that same miRNA.

The purpose of this work is to assemble and cheriaeta catalogue of such
mixed transcription factor/miRNA regulation loops lmmans. All data was
processed and stored in a relational databasendforbre, a web platform was
developed in order to enable further investigatidrss platform is available at
http://mirnatools.eu/TFmMiRNA/loops.html.
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1 I ntroduction

MicroRNAs (miRNAs) are small~22 nucleotides), non-protein-coding RNA mole-
cules known to regulate the expression of genebibging to the 3’-untranslated
regions (3-UTR) of mRNAs. These non-protein-codiRYA molecules are master
molecular regulators that have been found to belwed in cellular processes ranging
from differentiation, cell division, signal transttion and cancer.

MicroRNAs expression appears to have a tissue fipsa@jnature in which specif-
ic miRNAs are expressed preferentially in someugissor organs. It remains unclear
which are the main factors that control this tisspecificity, however several authors
have postulated the existence of a regulatory faeldiboop between transcription
factors controlling miRNA expression and the retpria control exerted by miRNA
over the transcription factor expression [1] [2] [@] [5]. In 2008, the DNA sequenc-
es of 550 human mIiRNA promoters have been charaeterby chromatin-
immunoprecipitation [6], and this work has the maljective of performing am
silico characterization of all these promoters.



1.1  MicroRNA biogenesis

The first microRNA molecules, lin-4 and let-7, wedentified in 1993 [7] and, since
then, there has been a rapid progress in idengifsiore miRNAs and understanding
their biogenesis, functionality and their targetgeegulation.

The majority of the miRNAs identified in the fir&0 years were located in the
noncoding regions between genes and transcribeghloentified promoters. These
miRNAs that are produced from their own genes é&e known as intergenic miR-
NAs. In 2003, Ambrogt al [8] also discovered some tiny noncoding RNAs dsdiv
from the intron regions of gene transcripts; thaseintronic miRNASs, i.e., miRNAs
produced from introns.

Transcription factors (TFs) are proteins that eithetivate or repress genes tran-
scription by binding to short cis-regulatory elensecalled transcription-factor bind-
ing sites. These binding sites are located in th&raam region of genes — the pro-
moter region, which is located around the transionp start site (TSS). Post-
transcriptionally, microRNAs repress mRNA tranglatby binding to partially com-
plementary sites, called miRNA binding sites, irithtarget mMRNAs. In animals,
miRNA-mediated repression is often relatively wealhereas transcription-factor-
mediated repression can be much stronger [9].

Similarly to TFs, a single miRNA can regulate npiki genes, and a single gene
can be regulated by multiple miRNAs. Thus, it seguise natural to think that both
miRNAs and TFs may cooperate in regulating the starget genes at the transcrip-
tional and post-transcriptional levels. Howeveg tholecular mechanism and nature
of this interaction has not yet been understood.

TFs are essential for transcription by bindingremscription-factor binding sites.
The resulting transcript is capped with a speciaiydified nucleotide at the 5’ end,
and polyadenylated with multiple adenosines - g(@9ltail, at the 3’ end [10]. In the
case of the miRNAs, this initial transcript, alsookvn as primary miRNA (pri-
miRNA), can be hundreds to thousands of nucleotideg and may contain several
miRNA precursors. Each one is a hairpin structam@mosed by 60 to 80 nucleotides.

The hairpin RNA structure is then recognized by ulear protein known as
DGCRS8 or “Pasha”. Pasha associates with the endzyrosha and orients this last
one to excise the hairpin structure. The resultiagpin, known as pre-miRNA, is
exported from the nucleus to the cytoplasm in &@se mediated by Exportin-5 pro-
tein. This transportat is energy-dependent, usifg Gound to the Ran protein [11].

In the cytoplasm, the pre-miRNA hairpin is recoguizand cleaved by the Dicer
enzyme, and its binding partners, TRBP proteinuidetl. This complex removes the
loop region of the hairpin structure, releasingiRNA duplex which is approximate-
ly 22 nucleotides long. The strand of the miRNA léupthat is less thermodynamical-
ly stable is preferentially loaded into the RNA-i@d silencing complex (RISC)
[12], which includes Dicer, TRBP and Argonaute pios. The strand loaded into the
RISC complex is called the guide strand and dird@sRISC complex to its mMRNA
target. The other strand, the passenger stransijisequently degraded by an un-
known mechanism [13].

The mature miRNA loaded onto to the RISC complekigs both to their mMRNA
target and usually binds to the 3'-UTR of the mRNAis association may result in
either cleavage or translational inhibition of taeget mMRNA, depending on the base



pair complementarity between the miRNA and the mRbiyet region. Perfect com-
plementarity usually results in mMRNA cleavage by RISC complex, whereas imper-
fect base pairing leads to translation repressiah [

1.2  Predicting transcription factor binding sites

The first step in the analysis of the transcriptfantor/microRNA regulation loops
was to predict the transcription factor bindingsi{TFBS) for all sequences of miR-
NA promoters published by Marsehal [6]. Given the miRNAs promoter sequences,
it was necessary to know which TFs could bind twséhpromoters and regulate their
transcription.

Currently, there are several programs availableluding TFSEARCH 1.3 [14],
MAPPER 2 [15], Match 1.0 [16], P-Match 1.0 [17], BRIO 3.0.2 [18] and TFBind
[19]. Predicting TFBS using position weight matscPWM) is widely used and
theoretically supported by Berg and von Hippel [ZDdch matrix relates a consensus
sequence to the four bases and each score is pomabto the binding energy for the
protein—DNA interaction [21]. Figure 1 illustratéss.
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Fig. 1. Sp1 [T00757] Matrix on TRANSFAC 8.3

Matrices and TFBS have been collected into databsiseh as TRANSFAC [22]
and JASPAR [23]. However not only all matrices héveir own specificity, as pre-
diction also requires the quantification of the itamity between the each weight ma-
trix and a potential TFBS detected in the sequence.

In order to achieve a greater degree of accurabgnvwomparing to the existing
ones, several algorithms have been proposed itatheyears. However, despite all
efforts, these algorithms sometimes produce malsg fpositives or false negatives.
Thus, one of the major remaining problems is hoviirtd the appropriate software.
Consequently, investigators often use severalegttisting programs.

1.3  Predicting microRNA targets

Nowadays it is evident that post-transcriptionalgasses play a much more important
role in the regulation of gene expression than iptsly expected. So, a crucial step
for the analysis of regulatory roles of miRNAs lie tprediction of their targets. Alt-
hough we do not know exactly the precise way howRNAs play their role, it is
known that, in animals, miRNAs are able to reptésstranslation of target genes by
binding to a small region of nucleotides that arespnt at the 3'-UTR region of the
regulated gene [24]. This region, called “seed’losated at positions 2-8 of the 5’



end of mMiRNAs and is known to contribute signifitgrio target recognition [25, 26].
That is why most existing algorithms start by tgyito find regions of 3' UTR target
gene that have strong Watson-Crick base pairingptemmentary to the miRNA seed
sites.

Since this initial step usually results in thousanélpotential target sites and many
false positives, most algorithms also use othediptien criteria such as conservation
of the miRNA target sites in homologous genes acdllmiRNA-MmRNA interaction
with a positive balance of minimum free energy [2Hdwever, several other features
have been experimentally and computationally idieati considering an individual
target site level as well a global mMRNA level [28].

Currently, there are several programs availabtg, Riana micro-T [29], miRanda
[30], PicTar [31], PITA [32], RNA22 [33], TargetSc§34] and MicroCosm [35]. The
several algorithms provide different predictionsdahe degree of overlap between
them is often poor or null [36]. Using GO (The Gebetology Consortium, 2000)
has become a standard way to validate the fundtoteerence of genes in a target
list. Nevertheless, this type of validation usualtguires a statistical analysis to con-
firm statistical significance [37].

Additionally, databases such as miRWalk [38] aniRTdrBase [39] have been
published. These databases aggregate target pwediftom several programs and/or
also store experimentally validated targets.

2 Materials and Methods

The characterization of the DNA sequences of miRprAmoters by chromatin-
immunoprecipitation provided, among other data iaf@rmation, a table with human
miRNA promoters and associated proteins and gendedtures (Supplementary
table S7). All human coordinate information uponickhthis investigation is based it
was downloaded in January 2005 from the UCSC GenBrogser (hgl7, NCBI
build 35). We started from these data and the firstg done was to collect all se-
quences from the indicated version of UCSC GenonosvBer, according to the TSS
positions of all 550 promoters. For that purposgds necessary to write a small pro-
gram. One of the sequences (hsa-mir-142) was dédearded because TFBS predic-
tion tools are unable to deal with such a lengggugnce (406435 nucleotides).

Having all these promoters’ sequences, it was tiemessary to predict TFBS for
all of them. For that, we used seven programs,ehaiMapper 2, Match 1.0, Patch
1.0, P-Match 1.0, PROMO 3.0.2, TFBind and TFSEARTB. Except for the input
sequence and, when possible, matrices selectioro(H8rtebrates), default parame-
ters were used. However, each program has its perificities and it was necessary
to deal with that in order to harmonize both inpartsl outputs.

Their first difference is the way how promoter seqgees can be sent to them.
MAPPER 2 is the only one that was able to procedSA&TA file containing all pro-
moter sequences. For TFSEARCH 1.3 we were ablewmidad EZRetrieve. This
free tool is a TFSEARCH viewer and also processedcomplete FASTA file. For
TFBind we conceived a tool similar to EZRetrievéisTprogram reads a FASTA file
and sends each sequence to the TFBind tool thataidable online. Then saves the
HTML outputs that can be seen when we perform thme search.



For all the others, a previous registration ondites where these tools are availa-
ble is necessary. Therefore, it is necessary tm logfore starting to use these tools.
Because of that, it would be much more difficultcimnceive a tool to perform this
search automatically. We splitted our FASTA filéoirseveral small files and submit
each one of them to each one of these tools.

Having all these huge amount of data, it was theressary to prepare it to be ana-
lyzed. EZRetrieve produced a table indicating thenber of binding sites for each
pair of predicted transcription factor and miRNAopwter sequence given to it as
input. Since the number of binding sites is a gimalicator for the probability of a TF
to regulate the transcription of a miRNA promotegsence, we decided to write a
tool to parse all output files of each predictimgram in order to count all binding
sites for each pair transcription factor/miRNA paer.

Besides the specificities of each output, this toad to deal with the fact that we
were only interested in results frafomo sapiens (HS) and some programs gave us
more than that. Thus, when not indicated in th@ututesult, it was necessary to test
each matrix against matrices databases in ordegrify if we were in the presence of
a human matrix or not. Same verification was penfedl with gene symbols, when
necessary. Applied these filters and totalizeditliing sites, it became obvious that
there are significant differences among all préadiicprograms.

Another issue related with these predictions isegeames. These outputs usually
indicate a gene name and the identification of Wwhiatrix was used to get each pre-
diction. However, gene names are not always coivpaimong the several data-
bases, because most genes have more than one\Wandewnloaded alHomo sapi-
ens genes registered in the NIH genetic sequence as¢aBenBank from the NCBI
site. Besides the official gene symbols, this dileo contains their synonyms or alias-
es. After comparing gene names, we were able wtifjenost of the genes listed in
the outputs of the TFBS applications. However, sofrtbem remain unclassified and
many others are nétomo sapiens genes.

The next step regards to the prediction of miRNAgess. Unlike, TFBS predic-
tions, these databases can be downloaded aslésxtDiespite the huge size of some
databases, it is quite simple to understand thgwuts and, when necessary, to write
data extraction programs. For this purpose, weestdry using miRWalk target pub-
lished predictions. Targets of all miRNAs analyzgd Marsonet al [6] were com-
pared withHomo sapiens genes predicted by all TFBS applications and \tlidsir
synonyms as well. Then it was necessary to idettidymatching predictions between
mirWalk targets and all TFBS databases in orddintbthe predicted loops. It is im-
portant to clarify that predicted loops were basednatching predictions only.

This analysis was also performed using mirTarBas#atabase with experimental-
ly validated targets. These first two databaseferdirom the others because their
results are published scientific articles, instefidredicted sites.

The next database used was Diana micro-T v3.0. ddtebase has about 2.5 mil-
lion records and targets are identified by EnsenfibleSince GenBank also contains
Ensemble IDs, we wrote a program in order to exfiracn Diana database all records
in which the target gene is one of the genes piedlisy the TFBS applications.

We also analyzed miRanda databases. There arefftheem, combining good and
non-good mirSVR scores with conserved and non-coademiRNAs. However, we
only analyzed good mirSVR scores databases. Iretlatabases genes are identified



by GeneBank ID (NCBI Entrez ID) and we started kiyting a program in order to
extract from these databases all records in whiehtdrget gene is one of the genes
predicted by the TFBS applications. Similar progdeduvere adopted in order to ana-
lyze MicroCosm and TargetScan databases. Thisolastalso has predictions for
conserved and non-conserved sites.

All collected data was stored in a relational datgband a web platform was de-
veloped in order to enable further investigations.

3 Results

After analyzing all selected data (see Materiald &ethods), we found 16450 of
such loops, covering 311 distinct transcriptiontdes and 344 distinct miRNAs. Us-
ing databases concordance as reliability critenidy 5 loops were predicted by seven
of the eight miRNA targets databases used: hs&2@b/STAT3, hsa-mir-200b/ZEB1,
hsa-mir-200c/ZEB1, hsa-mir-373/RELA and hsa-mir/ZEB1. However, several
TFBS tools did not contribute to these predictidngact, the pair hsa-mir-9/NFKB1
is the only loop predicted by all seven TFBS taoid six targets databases. However,
this result is not as good as it appears to beusecthe average number of both pre-
dicted binding and target sites is very low. Nelvelktss, there are several investiga-
tions relating NFKB1 with hsa-mir-9.

If NFKBL1 is involved in the loops with highest dbtses concordance, MYB tran-
scription factor is involved in the most loops witte highest target sites average (see
Table 1 for details), considering TFBS and targeedicted by at least three data-
bases. In fact, MYB is involved in eighteen of fhiet twenty two loops in these con-
ditions.

Tablel. Regulation loops that have the highest targes siterage.

#TFBS Avg. # Targets Avg.
mMiRNA TF Apps TFBS Apps Targets
hsa-mir-150 MYB 4 9.25 6 30.25
hsa-mir-182 MYB 5 21.00 4 23.00
hsa-mir-607 IKZF1 3 24.67 3 22.33
hsa-mir-155 MYB 3 4.00 5 20.00
hsa-mir-195 MYB 4 1.50 3 20.00
hsa-mir-497 MYB 4 1.50 3 20.00

At this point, it is important to say that averageget sites were calculated using
only six databases, because the other two usebtladss do not indicate the number
of target sites. MirTarBase contains experimentaijidated targets and mirWalk
contains published targets only.

Considering mirTarBase as a reliable source of ndiR&rgets and selecting only
loops with targets predicted by mirTarBase and wh®EBS were predicted by at
least 5 tools, we have the 19 regulation loopsdish Table 2. As we can see in this
table, the average number of TFBS for the hsa-@i3P1 loop is much higher than



all other loops. This is because both Patch 1.0 HABiInd predicted hundreds of
TFBS in this case.

Table2. Regulation loops predicted by mirTarBase andastléve TFBS applications.

Avg. #TFBS # Targets
MiRNA TF TFBS Apps Apps
hsa-mir-9 NFKB1 23.86 7 6
hsa-mir-15a NFKB1 5.86 7 5
hsa-let-7a NFKB1 16.14 7 2
hsa-mir-146a NFKB1 5.00 7 2
hsa-mir-23b PLAU 2.33 6 5
hsa-mir-106a RUNX1 78.33 6 5
hsa-mir-200b ZEB1 8.40 5 7
hsa-mir-200c ZEB1 3.20 5 7
hsa-mir-429 ZEB1 8.40 5 7
hsa-mir-424 MYB 15.40 5 6
hsa-mir-101 FOS 6.80 5 6
hsa-mir-16 MYB 2.40 5 6
hsa-mir-124 SP1 766.80 5 5
hsa-mir-141 ZEB1 3.20 5 4
hsa-mir-200a ZEB1 8.40 5 4
hsa-mir-122 SRF 16.60 5 4
hsa-mir-124 AHR 30.80 5 4
hsa-mir-218 SP1 32.80 5 3
hsa-mir-27a SP1 170.80 5 3

Since the number of predicted binding sites is @dgiadicator for the probability
of a TF to regulate the transcription of a miRNAmoter sequence, it is important to
analyze which TFs and miRNAs have the highest nuroberedicted TFBS. These
values are shown in Table 3 and Table 4.

Table3. Top 10 of TFs by sum of predicted TFBS.

TF Total BS Total loops Mean BS
SP1 45631 197 231.63
RUNX1 26965 241 111.89
POU2F1 22013 265 83.07
CREB1 11988 242 49.54
REL 8603 62 138.76
TP53 8276 188 44.02
MYB 6756 206 32.80
NFKB1 5992 104 57.62
FOS 5676 111 51.14

PAX5 5152 119 43.29




Table4. Top 10 of miRNAs by sum of predicted TFBS.

mMiRNA Total BS Total loops Mean BS
hsa-miR-124 12809 107 119.71
hsa-miR-106a 6084 109 55.82
hsa-miR-607 6052 114 53.09
hsa-miR-587 5683 103 55.17
hsa-miR-425 5538 72 76.92
hsa-miR-374b 5395 123 43.86
hsa-miR-374a 5128 111 46.20
hsa-miR-122 5128 87 58.94
hsa-miR-421 4927 102 48.30
hsa-miR-92b 4829 78 61.91

As result of this work, we assembled and charamdra catalogue of such mixed
transcription factor/miRNA regulation loops in humall data is stored in a relation-
al database and a web platform was developed ier dodenable further investiga-
tions. This database has 38 tables and stores abbudtillion records. The web inter-
face is available at http://mirnatools.eu/TFmiRNoAbs.html and allows searching
for loops using several criteria. Also presentdathils of every loop such as predict-
ed TFBS and targets, scores of each prediction, etc

4 Discussion

We were looking for transcription factors regulgtithe expression of a miRNA and
being simultaneously the target protein-coding gefrthat same miRNA, as illustrat-
ed in Figure 2. It is known that the cell’'s machine designed in order to minimize
energy consumption, so why should a gene regutetexpression of a miRNA and
being simultaneously its target, usually resulimgs own translational repression?

The existence of such regulatory loops seems teatew complex mechanism of
genes regulation. Despite the fact that we canebugderstand the biological signifi-
cance of these regulatory loops, their existenenseto be evident and should be
experimentally validated. However, it is importéamtoe aware that all loops predicted
by our analysis are based on matching predictiohg &urther investigations should
address some more complex issues, such as:

— The fact that transcriptional and posttranscrilaegulation are very likely to
occur at different time scales.

— Positive vs. negative regulatory feedbacks haveoitapt consequences in
terms of network dynamics. Importantly, they arewn to be prerequisites for
the existence of multistability and oscillatory betor, respectively.

— MicroRNAs regulate cellular networks as network paments and it would be
of key interest to assess the impact of the idedtifoops as part of the gene
regulatory networks.
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Fig. 2. Mixed transcription factor/miRNA regulation loops

Since a single miRNA can regulate multiple genes @single gene can be regu-
lated by multiple miRNAs, it is quite natural tartk that both miRNAs and TFs may
cooperate in regulating the same target genes attrdmnscriptional and post-
transcriptional levels. In fact, the co-regulatiofh transcription factors and mi-
croRNAs in transcriptional regulatory networks isuibject that has been investigated
by several authors [1] [2] [3] [40] [41] [42] [4344] [45] [46].

Clearly, miRNAs cannot independently perform a Entask in cells. Instead,
miRNAs regulate cellular networks as network conmgda in many cellular func-
tions [4]. In fact, TFs and miRNAs function togetle gene regulatory networks that
are not yet completely identified and understoodnsgquently, all loops identified
by this investigation should be seen as comporetsgulatory modules, instead of
isolated loops. Although this is true, we can alsalyze each one of these individual
loops.

A similar loop was found in the developing Bfosophila melanogaster eye [5].
Author’s investigation revealed that, in nonstinteth cells, Yan represses miR-7
transcription, whereas miR-7 RNA represses Yangmmogxpression in photorecep-
tors, by binding to sequences within its mRNA 3’ RITThis mutually inhibitory
relationship helps to partition the expression ahYnto eye progenitor cells and that
of miR-7 into differentiating photoreceptors, cantiting to these two alternative
fates. According to the authors' conclusion, thechanism can explain how signal
transduction activity can robustly generate a statflange in gene-expression pat-
terns.

As demonstrated in the Materials and Methods sectpioediction of both TFBS
and targets varies widely among all tools. To redihe number of predictions and to
try to raise the reliability of predicted resultse usual procedure is to consider only
those results that are predicted by several algost assuming this overlap as a high-



er-quality subset of predictions. However, thisdd necessarily true. In fact, as indi-

cated by Ritchie W et al. [47], this can be a tfHpey suggest that searching for over-
laps between miRNA target prediction algorithmswtidoe discouraged owing to a

lack of utility and rationale. For this reason dmtause we did not want to restrict
future investigations, we decided to publish resfibm all used databases, despite
the certainty that the vast majority of these pr#alns are not real loops.

Keeping in mind the fact that this is ansilico analysis, we should be aware that
the vast majority of all detected loops have a Vewy probability of being real loops.
All predicted loops rely on several other tools aasl postulated by GIGO (garbage
in, garbage out) axiom, if invalid data is enteneth a system, the resulting output
will also be invalid. Therefore, further investigats should start by defining reliabil-
ity criteria. Best validation would be to compailepaedictions with experimentally
validated targets. However, such datasets are @il $0 be used as benchmarks.
Since each database scores each one of the poedicthese scores can be used to
identify the most reliable predictions and an olleseore can also be computed.

Another possible way to perform additional validas is by using principal com-
ponent analysis (PCA). After applying PCA on a matvith the number of predic-
tions (for example) for some selected miRNAs andege we can visually analyze
how miRNAs are related to each other concerningltee that control their transcrip-
tion, as predicted by each one of the databasesaieluster these results, measur-
ing the Euclidean distance of all miRNAs (for exd@)pHowever, we can also clus-
ter all data used to perform PCA analysis and gagtister dendrogram. Then, we can
compare all resulting clusters with miRNA clustah®ady validated.

Our ongoing work is trying to build up more knowdedin this research area.

5 Conclusion

Since cell’s machinery is designed in order to miae energy consumption, it
would be unlikely for a gene to regulate the exgimsof a miRNA and being simul-
taneously its target, usually resulting in its owanslational repression at a post-
transcriptional level. However, this silico analysis has found 16450 potential loops,
covering 311 distinct transcription factors and Hgtinct miRNAs. Some of these
loops have a great probability of being experimintaonfirmed. Although not being
the ultimate goal of this investigation, we alsonputed a score for each predicted
loop. With this or any other scoring system it @sgible to guide experimental valida-
tions of predicted loops.

Despite the fact that we cannot yet understandiblegical significance of these
regulatory loops, their existence seems to be avidad this must be an important
mechanism of genes regulation. However, all thesa demand for further investiga-
tions and experimental validations. In order tobdadurther investigations, we de-
veloped a web platform through which all data carabalyzed.
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